
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 51

Abstract - Recent technological advancements have

led to the growth in the volume of data towards

zetabyte size over the past decade. This huge volume

of data along with huge variety and velocity is

termed as big data. Due to its sheer volume of data,

efficient retrieval of data with reduced latency plays

a major role. This growth of data calls for a novel

file system architecture for data retrieval. This paper

describes a novel framework for efficient retrieval of

data using an Enhanced Hadoop Distributed file

System architecture (EHDFS). Performance of

queries due to the availability of files for query

processing is greatly improved by the efficient use of

namenode in the proposed EHDFS and its analysis

thereof. Hence this paper proposes a generic

approach of using secondary namenode in EHDFS.

The novel EHDFS framework addresses the big data

challenges. The proposed approach has exploited

various methodologies in reducing the latency during

data retrieval. This paper investigates the issues on

creation of secondary namenode and its management

for fast retrieval of data using EHDFS. The

proposed architecture is implemented and the

experimental results show that our approach works

efficient by increasing the throughput and also by

handling large number of queries efficiently and

thereby reducing the latency. The efficacy of the

approach is tested through experimental studies

using KDD Cup 2003 dataset. In the experimental

results, proposed ‘EHDFS’ with new methodologies

outperforms compared to the existing methods.

Keywords: Bigdata, EHDFS, namenode, secondary

namenode, bloom filter.

I. INTRODUCTION

Big data is defined as large amount of data which

requires new technologies and architectures so that it

becomes possible to extract value from it by capturing

and analysis process. Due to such large size of data it

becomes very difficult to perform effective analysis

using the existing traditional techniques. Big data due to

its various properties like volume, velocity, variety,

variability, value and complexity put forward many

challenges. Since Bigdata is a recent upcoming

technology in the market which can bring huge benefits

to the business organizations, it becomes necessary that

various challenges and issues associated in bringing and

adapting to this technology are brought into light. The

various challenges and issues in adapting and accepting

Bigdata technology, its tools (Hadoop) are also

discussed in detail along with the problems Hadoop is

facing. The paper concludes good Bigdata practices to

be followed in order to process this huge data

commonly known as Big Data. The existing technology

makes use of a file system called the Hadoop

Distributed File System (HDFS) which makes data

retrieval easier and faster. Even though the Hadoop

Distributed File System comprises of large number of

servers, the two main types of servers in HDFS are

single NameNode and DataNodes. The NameNode

contain links to the DataNodes and also stores

information about them. The DataNodes on the other

hand are responsible for storing user data and also for

performing read, write or update of a file upon

instruction from the NameNode. Now failure of the

DataNode is more common but this can be dealt with

easily since there is always a backup in the form of

another DataNode. However, since there is only a single

NameNode, its failure leads to loss of all the links to the

DataNodes. Hence the failure of any one of these

servers can compromise on efficient data storage and

retrieval. Thus the main objective of this paper is to deal

with the failure of the secondary name node problem

which leads to erroneous results. Thus this paper

proposes a change to the existing HDFS architecture by

introducing a secondary NameNode in addition to the

original NameNode which ensures that the links to the

DataNodes are not lost at any instant. The novel EHDFS

also contributes in proposing the new methodologies for

the creation of a secondary Namenode and update of the

secondary Namenode as well. The update of secondary

Namenode ensures that even in case of the original

Namenode failure, the updated information is not lost.

EHDFS: Overview Of Novel Architecture And Data Retrieval

Model In Big Data Scenario

1
Associate Professor, Department of Computer Science and Engineering, Sri Venkateswara College of Engineering,

Pennalur-602117
2,3Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Pennalur-602117

 Anitha. R1, John Bright. A2, Nikhil Selvaraj3

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 52

This updation is done using a special kind of a

probabilistic data structure called Hadoop Namenode

Bloom Filter. These proposals when implemented aims

to increase the efficiency of data retrieval in a big data

scenario.

The rest of the paper is organized as follows:

Section 2 summarizes the related work and the

problem statement. Section 3 discusses the detailed

design of the system model. Section 4 describes the

proposed Hadoop namenode bloom filter details and its

structure. The performance evaluation based on the

prototype implementation is given in Section 5 and

Section 6 concludes the paper.

Problem statement

 In a big data environment where the data is huge and

geographically distributed, efficient retrieval of data

is of prime focus. Major roadblock is latency in

retrieval. This paper proposes an efficient system for

fast data retrieval in a big data scenario that will have

the following as major goals: reduced latency,

improved throughput. The following is considered as a

minor goal: Reduction in network traffic. The primary

contribution of this paper is the Enhanced Hadoop

Distributed File System architecture which satisfies the

above mentioned objectives. In the proposed

research, we have studied the impact of primary

name node failure and also the impact of stale data in

the secondary name node. Thus the proposed model has

developed a mechanism to adaptively minimize such

an impact so as to optimize systems performance.

II. RELATED WORK

Recently a large volume of work is being pursued

in data analytics in big data [1]. Kyong-Ha et al. has

discussed the optimization strategies and open issues

and challenges raised. in big data. In paper [2][3] the

authors has claimed that the data retrieval using

metadata is less when compared to without using

metadata due to reduction in latency. Author Chang Liu

et al. [4] has discussed that storing replicas at different

servers and/or locations will make user data easily

recoverable from service failures. He has also proposed

a multi-replica Merkle hash tree (MR-MHT) a novel

authenticated data structure designed for efficient

verification of data updates. Author Yu Hua et al. [5]

has proposed a scalable and adaptive metadata

management in ultra large scale file systems. Author

Kaushik Velusamy et al. [6] has proposed an inverted

index data structure is fast and returns all the relevant

results. In his work he has established Hadoop cluster

and by passing Wikipedia files as input data, inverted

indexing is done.Yongqiang He et al. [7] has suggested

that Data placement structure is important as it affects

warehouse performance. Quanqing Xu et al. [8] has

discussed about the efficient and scalable metadata

management in large scale databases. Author Bin Lan

et al. [9] has proposed a variant of the signature

file, called Bit-Sliced Bloom-Filtered Signature File

for mining frequent patterns. Many researchers have

investigated possible ways to improve the performance

of clustering based on the popular clustering algorithms

like partition clustering, hierarchical clustering and

frequent item based clustering. The concept of bloom

filter in cloud computing is explained in depth in the

paper[10]. The author has discussed about the

independent lookup using CBF in cloud era. Here, we

have proposed an effective approach of using the

primary name node which stores metadata and also the

handling the failure of primary namenode in an efficient

way.

III. SYSTEM MODEL

The section 3 discusses in detail about the existing

HDFS architecture and the proposed EHDFS

architecture.

3.1 Existing HDFS Architecture

Figure 1 represents the existing Hadoop Distributed File

System architecture.

Figure.1 Hadoop Distributed File System

Architecture

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 53

The existing HDFS has master/slave architecture. The

HDFS cluster consists of a single namenode, a master

server that manages the file system namespace and

regulates access to files by clients. In addition, there are

a number of datanodes, usually one per node in the

cluster, which manages the storage attached to the nodes

that they run on. HDFS exposes a file system

namespace and allows user data to be stored in files.

Internally, a file is split into one or more blocks and

these blocks are stored in a set of datanodes. The

namenode executes file system namespace operations

like opening, closing, and renaming files and

directories. It also determines the mapping of blocks to

datanodes. The datanodes are responsible for serving

read and write requests from the file system’s clients.

The datanodes also perform block creation, deletion,

and replication upon instruction from the namenode.

The existence of a single namenode in a cluster greatly

simplifies the architecture of the system. The namenode

is the arbitrator and repository for all HDFS metadata.

The system is designed in such a way that user data

never flows through the namenode. The namenode

maintains the file system namespace. Any change to the

file system namespace or its properties is recorded by

the namenode. An application can specify the number of

replicas of a file that should be maintained by HDFS.

The number of copies of a file is called the replication

factor of that file. This information is stored by the

NameNode. In the existing HDFS when the namenode

gets failed then the entire data retrieval process will

become tedious. Hence in order to overcome this issue

we have proposed EHDFS, an Enhanced Hadoop

Distributed File System architecture.

3.2 PROPOSED EHDFS ARCHITECTURE

Figure 2 represents the proposed Enhanced Hadoop

Distributed File System Architecture. The proposed

EHDFS architecture consists of a secondary namenode,

takes care of replication and update of metadata in case

of primary namenode failure. The proposed Hadoop

Namenode Bloom Filter (HNBF) takes care of the

update of the secondary name node. HNBF provides the

protocol for updating the metadata information available

in the secondary name node in order to maintain the

consistency of the metadata file in the secondary name

node. In proposed architecture a secondary namenode is

introduced to store the replica of original namenode.

The failure of primary namenode will automatically

direct the user’s request to secondary namenode. This

novel work reconsiders the design of the existing

namenode server and proposes a novel namenode model

that reduces the time consumption process by means of

implementing a novel data structure called Hadoop

Namenode Bloom Filter (HNBF). The model also

improves the metadata consistency, in both the primary

and secondary namenode by metadata management

policies using HNBF. HNBF enhances the performance

of the existing HDFS architecture model further. The

metadata management is taken care by the proposed

HNBF which reduces the number of small writes, and

hence significantly improves the overall system

performance.

Figure. 2 Enhanced Hadoop Distributed File System

Architecture

Namenode reliability results in efficient data finding by

providing locality of reference in large scale storage and

improves the efficiency of the proposed model. The

functionalities of the proposed architecture are

described in the below sections.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 54

3.3 SECONDARY NAMENODE MODEL

Figure3 represents the internal architecture of secondary

namenode model.

Figure. 3 Internal Architecture of Secondary

Namenode Model

It has 2 layers, one for secondary namenode creation

and the other for secondary namenode update. In the

creation layer the content for the namenode is created.

In the update layer, a novel Hadoop Namenode Bloom

Filter is proposed and is used to compare the values in

the Hadoop namenode Bloom Filter present in both the

primary and the secondary namenode using XOR

operation and thereby update the secondary namenode.

The 2 update policies which are used are triggered

update and HNBF update.

3.3.1 CREATION OF SECONDARY NAMENODE

Creation of secondary name node plays a major role in

novel architecture. The content of the primary name

node is replicated into secondary name node. In case of

primary node failure the secondary name node takes

care of the request from the user. In such a scenario

which is very rare, all the links to the datanodes will be

directed to the secondary namenode.

3.3.2 Update of secondary namenode using HNBF

HNBF is a dynamic layered bloom filter. The

number of layer represents the number of attribute in the

metadata file. Every metadata server has its own

Hadoop namenode Bloom filter which is a part of

extended bloom filter. The frame of the layer is

comprised of suffix, header, counter and body. The

suffix information is to group the metadata file of

same replica location. The header information is used

to identify the attribute.

IV. HADOOP NAMENODE BLOOM FILTER

In this HNBF, each layer has an independent modified

bloom filters. The attributes assigned to these layers are

independently hashed using MD5, SHA1 and SHA2

algorithms. Initially all the bit values are set to zero.

When a metadata file is stored in the metadata server,

the respective attributes are hashed and the

information’s are stored into the respective layers of

Hadoop namenode bloom filter. The schemas are

identified by their respective header values. Any

changes in the primary node are updated to the

secondary namenode by using the proposed update

policies.

4.1 Update of Secondary namenode using HNBF

An efficient update mechanism deals with two issues.

The first issue is when and what kind of update is

required and second issue is the amount of

bandwidth consumed in maintaining consistency. In

order to make the proposed system work perfect with

consistent data, the update has to be carried out in

two different sequences. 1. Whatever changes

occurred to the original file has to be updated to the

metadata file and 2. The change in the metadata has to

be updated to its replica location. In the proposed model

the update is triggered based on threshold value.

Updating the metadata file continuously at runtime is

expensive. In the Hadoop namenode bloom filter the

schemas are represented in different layers.

Whenever there exists any change in the layers of

Hadoop namenode bloom filter, then the corresponding

layer has to be spread to all the metadata servers

which hold the replica of that particular file. Hence

in spite of updating the whole of the metadata file

only the corresponding bit level is updated which

reduces the network traffic and also reduces

bandwidth consumption.

4.2 Update Mechanism.

The update mechanism of the attributes is

carried out efficiently by comparing the value of

primary HNBF with secondary HNBF. When changes

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 55

occur in the metadata then the corresponding LBF gets

changed. The HNBF value of the schema exists in

primary location is XOR with the secondary

location. When the output converges to one, means that

there is a difference in the original and replicated

metadata. Hence update is taken place.

Algorithm for Update Mechanism :

This kind of update reduces the network traffic and

time by updating only the respective layer instead

of all the attributes. The total storage requirement of

HNBF is negligible. Hence this ideal solution to the

metadata update problem would provide immediate

stability and consistency of all metadata updates

with less performance overhead, and no special

hardware support.

V. IMPLEMENTATION AND RESULTS

The experiments have been carried out in a Hadoop

setup which contains primary name node and the

secondary namenode. In the experiment, files are

uploaded into the storage and then downloaded based on

the user’s requirement with and without metadata. In

experiment #1 we have used the KDD Cup dataset

and investigated the effect of file access

performance using metadata with respect to the

response time. Figure 4 compares the response time

for accessing the file with metadata and without

using metadata.

Fig.ure 4. Comparison with respect to response time

of file retrieval with and without using metadata

The performance result shows that the response time

for retrieving a file using metadata is less when

compared to that without using metadata because

the metadata attribute holds the information about

where the data is stored. Hence when the metadata

file is found, the query is mapped to the exact

location of the data in the data server, leads to the

speedy retrieval of data from the data servers.

In experiment #2 we have used the same dataset

and the experiment is conducted for updating the

metadata in the replica location using Hadoop

namenode bloom filter. Figure 5 compares the update

time of metadata in replica location with and

without using Hadoop namenode bloom filter. Response

time is the time taken to update the metadata in the

replica location using LBF. Using LBF the update is

carried out only for the respective attribute which is

modified, hence the time taken is less.

Figure 5. Comparison of update time with and

without using BF

0

0.2

0.4

0.6

0.8

1

1.2

1 7 13 19 25 31 37 43

R
e

sp
o

n
se

 T
im

e
 i

n
 m

s

File ID

File Access

Without

Metadata

File Access

With

Metadata

0

0.5

1

1.5

1 7 131925313743

U
p

d
a

te
 t

im
e

 i
n

 m
s

Files Uploaded

Update

Without BF

Update

using BF

Hadoop Namenode Bloom Filter: Algorithm for

Update Mechanism

Input: Upload changes in metadata file.

Output: Updated metadata file in Replica

 Location

 /* updating the Hadoop namenode Bloom Filter */

 Begin

 Update metadata (S1) /* S1 refers to a

 Single attribute in metadata */

 a = old value (HNBF in primary namenode)

 b = old value (HNBF in secondary namenode)

 X = a (XOR) b;

 If (X =1) then

 Update (HNBF in replica location);

 End

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 56

Experiment#3 is carried out to show the

performance of HNBF by means of percentage of

error rate which is calculated using the amount of stale

data provided to the user instead of the updated

data. We observe that periodic update has higher error

rates than HNBF update as shown in Figure 6. This

could be explained as follows. Assume that when an

user modifies the file at time t1 which gets

reflected in the metadata attribute, the same has to be

updated in the replica location otherwise the stale

metadata misleads the communication towards data

server. In this experiment the periodic update is

calculated for every 20 minutes.

Figure 6. Comparisons of Error Rate% of Bloom

Filter update with periodic update

Experiment#4 is carried out to show the

performance of bloom filter by means of False

alarm which is calculated using the number of times the

update takes place for the same existing data. From the

figure7 shown below it is observed that bloom filter

update results in the lesser number of false alarms

compared with the triggered update and periodic

update. The reduction of false alarms by bloom filter

based update is mainly due to their threshold fixing

capability.

Figure 7. Comparisons of False Alarm update time

with and without using HNBF

The threshold value for BF update depends on the

update probability. When there is an increase in the

update probability the false alarm is reduced but

there will be an increase in the error rate percentage.

In periodic update the refresh time is fixed for

every 20 minutes but the probability of update has an

effect of changing the refresh time of the attribute

thus, decreasing the false alarms. Hence the above

experimental results demonstrate that our EHDFS

design is highly effective and efficient in improving

the performance of data retrieval in bigdata

environment.

VI. CONCLUSION

This paper presents the data retrieval framework in

bigdata environment that can be used to store and

retrieve data in a bigdata environment using Hadoop

distributed file system. Due to huge amount of data

stored in bigdata scenario and due to lack of information

about the data (i.e. Location, file name, size of the file ...

etc.) the data cannot be retrieved much efficiently. In

order to make the system work efficiently, a novel

architecture with a new design called enhanced hadoop

distributed file system architecture is proposed. Further,

more specifically, the proposed EHDFS architecture

comprises of two levels of name node. The first level

can be viewed as a filter that works at the speed

of traffic by quickly providing a replica which can

potentially match the input and the second level take

care of the update of that actual match. Finally, with

these features the proposed work tends to give an

Enhanced Hadoop Distributed File System Architecture.

What does the future hold? Many further researches are

ongoing in some aspects related to data retrieval in big

data. Our current implementation is weak in security

considerations in HDFS. Finally, with all these feature

the future work tends to give a SHDFS - Secured HDFS

where data lake process can be included.

REFERENCES

[1] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi Yon

Dohn Chung, Bongki Moon, “Parallel Data Processing

with MapReduce: A Survey”, SIGMOD Record, Vol.

40, No. 4, 2011.

[2] R. Anitha, SaswatiMukherjee. “A Dynamic

Semantic Metadata Model in Cloud Computing”, Proc.

of Springer CCIS, Vol.2, pp.13–21, 2012.

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19

E
rr

o
r

R
a

te
 %

Update file

Periodic

Update

Bloom

Filter

Update

0

10

20

30

40

1 3 5 7 9 1113151719

F
a

ls
e

 A
la

rm

Update file

False Update Alarms

Periodic

Update

Triggered

Update

Bloom Filter

Update

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 4, Aug-Sept, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 57

[3] Hua, Y. Jiang, H. Zhu, Y. Feng, D. Tian,

L.”Semantic-aware Metadata Organization Paradigm In

Next-generation file Systems”, IEEE Transactions On

Parallel Distributed Systems, Vol. 23, No. 2, pp.337–

344, 2012.

[4] Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang,

Lizhe Wang, Jinjun Chen, “MuR-DPA: Top-down

Levelled Multi-replica Merkle Hash Tree Based Secure

Public Auditing for Dynamic Big Data Storage on

Cloud”, International Association for Cryptologic

Research, pp.391-396, 2014.

[5] Yu Hua, Yifeng, Hong Jiang, Dan Feng, and

Lei Tian,"Supporting Scalable and Metadata

Management in Ultra Large Scale File Systems",

IEEE Transactions on Parellel and Distributed

Systems, Vol.22, No.4, 2011.

[6] Kaushik Velusamy, Deepthi Venkitaramanan,

Nivetha Vijayaraju, Greeshma Suresh, Divya Madhu,

“Inverted Indexing In Big Data Using Hadoop Multiple

Node Cluster”, (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 4,

No. 11, 2013 .

[8] Quanqing Xu, Rajesh Vellore Arumugam, Khai

Leong Yong, and Sridhar Mahadevan, “Efficient and

scalable Metadata Management in EB-scale File

Systems”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 6, No.1, pp.1-10, 2013.

[9] Bin lan. Beng chin ooi, kian-lee tan, ”Efficient

Indexing structure for mining frequent patterns”, in

proc. International conference on Data Engineering,

2002, pp. 453-462.

[10] R. Anitha, SaswatiMukherjee. “CBF: Metadata

Management in Cloud Computing”, Proc. of

International Conference on Computational Intelligence

and Information Technology, 2013.

